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Abstract 

In this paper modifications to an algorithm for 

electrocardiogram (ECG) synthesis based on a 

combination of Gaussians to fit real ECG data have been 

proposed. 

A method is proposed for fitting algorithm assuming 

that constituent Gaussian functions in GCM model are 

independent. Desired period(s) of ECG were selected and 

the number of Gaussians in the morphologic model was 

determined. For ECG synthesis, a Gaussian was fitted 

around each of the extrema and minimized local error 

that is defined as local difference of real ECG and our 

model. The range of Gaussian fitting (place to put 

independent Gaussian) was determined using two 

methods: zero crossing method and minimum bank 

method. Results were presented based on the efficiency of 

determining the Gaussian parameters in terms of time for 

fitting and accuracy of model. 

 

1. Introduction 

Modeling of ECG can be used in many aspects such as 

classification (diagnosis), simulators and compression. 

Since Gaussian pulse has a shape resembling that of 

the pulsatile component in ECG, Suppappola et al 

decomposed and represented ECG as sum of Gaussian 

pulses but did not account for asymmetries waves in ECG 

[5].  They proposed Chip Away Decomposition (ChAD) 

algorithm which was an iterative method for parameter 

determination. This reference has used normalized root 

mean square error (NRMSE) as cost function in fitting 

part of their algorithm.  Newton-Raphson, steepest 

descent and Nelder-Mead Simplex methods have been 

utilized as their minimization part of the proposed 

algorithm. They fitted each wave independently and 

iteratively in their ChAD method.  

References [3, 4] improved the proposed model in 

Reference [1] with accounting for T wave asymmetry. 

They used 18 parameters (6 Gaussians) in their model 

and determined them based on a nonlinear least squares 

optimization procedure in fitting procedure. Modeling of 

ECG with 7 Gaussian (21 parameters) have been 

investigated by Clifford et al [5]. They characterized each 

of symmetric turning points (Q, R and S) by one 

Gaussian and asymmetric turning points (P and Q) by 

two Gaussians. Again a nonlinear gradient descent is 

performed to optimize parameters of their model.  

References [3, 4, and 5] have used beat-by-beat basis 

in order to derive their model parameters. In their 

method, all parameters were determined simultaneously.  

These references also used a simple peak detection and 

time-aligned averaging to minimize the search space for 

fitting the parameters. Peak and through detection have 

also been used to find the relative location of turning 

points in time. 

Our proposed algorithm can be simply used for 

modeling of one or more cycle(s) without any 

modification. It also doesn't need any segmentation or 

windowing to separate ECG cycles and actually all cycles 

of ECG are modelled together. By zero crossing and 

minimum bank methods, model calculation time 

improved without any prior knowledge about place of 

PQRST waves. In our algorithm, modeling of the main 

shape of ECG (without accounting noise effect that is 

important in simulators for ECG training program) results 

in minimum number of Gaussians. For example if there is 

no T wave in ECG Waveform, our proposed algorithm 

will not assign any parameters to T wave. This aspect can 

be useful in ECG compression. 

 In this paper effect of  

(a) Two ranges of fitting determination 

(b) Number of Gaussians  

on accuracy of ECG modelling and model calculation 

time is examined.  

2. Methods 

2.1. Gaussian function and its role in ECG 

synthesis 
A 1D Gaussian function defined as below: 
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In the above equation, mean (µ) and variance (ı2) are 

parameters that identify shape of Gaussian. The Gaussian 

Combination (GC) is defined as below: 
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Number of Gaussians of GC model in different 

references is summarized in Table 1. 

Table 1. Number of Gaussians in different references 

Reference Number of Gaussians (P) 

2 Based on NRMSE threshold 

3,4 6 

5 7 

4 

Proposed adaptive determination for  p = n+2m  

(n = Symmetric turning point, m = asymmetric 

turning point) 

Our Method Manually or Automatically 

2.2. Determination of GCM parameters 

for ECG modeling 

In our proposed algorithm, we assumed that ECG is 

composed of a set of independent Gaussian Functions; so 

discovery of each independent component place was very 

important. Steps that should be completed in our 

algorithm for GCM modeling are listed below: 

1- Loading ECG signal from Database. 

2- Selecting cycle(s) of ECG that contain P, QRS 

and T waves. 

3- Determining number of Gaussians that are needed 

in synthesis process. (Further details provided in 

subsection 2-2-1). 

4 Applying suitable operation(s) as below, Based on 

Fitting range determination method : 

- In case of utilizing zero crossing method for 

fitting range discovery, full rectification of ECG 

signal (calculating absolute value of ECG signal), 

separately modeling positive and negative parts of 

ECG and finally combining Gaussians that have 

been resulted from that parts should be applied 

respectively. In order to improve modeling 

accuracy, positive and negative parts are modelled 

independently. 

- There is no need to apply any changes to ECG 

signal for minimum bank method fitting range 

determination. 

4- Finding biggest local maximum as Gaussian 

fitting locus. 

5- Determining domain of Gaussian fitting around 

local maximum found in step 5 with zero crossing 

or minimum bank method (see subsection 2-2-2). 

6- Fitting a Gaussian function in the part of ECG that 

has been selected based on a range of fitting found 

in step 6 (utilize training algorithm that presented 

in subsection 2-2-3).  

7- Subtracting the resulting Gaussian function (result 

of step 7) from original ECG signal in order to 

determine local error.  

dECG ECG GaussianNew Old mo el   (3) 

 

In equation (3) ECGNew is local error that will 

be used in next step, ECGOld  is remaining parts 

of ECG from last steps and GaussianModel  is 

Gaussian function that have been fitted in step 7 

(above). 

8- Substituting the original signal with local error  

( NewECG ) that has been determined in step 8 and 

back to step 4 until reaching maximum number of 

iteration (N) or satisfying desired minimum error 

requirement (iterative process) 

2.2.1.  Determining number of Gaussians in 

GCM model 

There are two methods for determining number of 

Gaussians. These methods are explained below with their 

main advantage(s) and disadvantage(s):  

1- Manual method: Operator will offer number of 

Gaussians in this. Since calculation duration of 

synthesis process and memory space needed for 

GCM model are in direct relation with the number 

of Gaussians, operator is able to control them 

(benefit). As this method needs to interact with 

the operator, it is semi-automatic (drawback). 

2- Automatic method: Quantity of Gaussians is 

determined based on number of local maximum 

that is presented in real ECG. Suitable accuracy in 

ECG synthesis is the main benefit of this method 

that corresponds to increase in ECG synthesis 

time and memory space that is needed. In this 

method, details of ECG can be included in GC 

model. This mode is suitable for hardware 

simulators that can be used for training purpose. 

2.2.2. Fitting range determination in GCM 

model 

Assigning the range which we decide to fit to an 

independent Gaussian has great importance in this 

algorithm. We called this process as fitting range 

determination and introduced two methods in this work. 

DC value of ECG should be removed from original signal 

in both methods. Two methods of range determination in 

GCM model are: 

1- Zero crossing method: In this case, two zero 

crosses were chosen across the biggest local 

maximum found in step 5 of section 2-2 as 

starting and ending points of interval for fitting in 

that range.  
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2- Minimum bank method: In this method, a bank of 

local minimums was produced. In the next step, a 

local maximum (biggest local maximum in step 5 

of algorithm stated in section 2-2) and two 

surrounding local minimums formed the fitting 

interval. These local minimums were found based 

on the minimum bank gathered previously.  

2.2.3. Training Algorithm for Gaussian 

fitting 

At this level, a Gaussian function was fitted to the 

original signal in place of local maximum and the interval 

around it.  In fact, Place of Gaussian (Gaussian mean), 

Gaussian standard deviation (indicator of Gaussian 

width) and amplitude of Gaussian in training step should 

be decided about after determining number of Gaussians. 

For Gaussian fitting in each interval, the following 

training method was used: 

1- Considering place of local maximum as mean of 

Gaussian function (
k

 ). 

2- Assuming primary guess for 
k

 . 

3- Calculating value of w
k

based on 
k

 and signal 

value in place of Gaussian S(x):  

2 . ( ).w S x
k k

   
            

(4) 

 

4- Calculating fitting error in desired range as: 

_ modFitting err ECG Gaussianrange el   (5) 

 

ECGrange  is the part of original ECG located in 

fitting interval and modGaussian el  is as before. 

5-  Computing correction coefficient as below: 

Fitting_err 1
.

| Fitting_err |
CF

K
  

(6) 

 

In above Equation CF is correction factor, Fitting_err 

is fitting error that determined in step 4 and K is training 

algorithm step. 

6- Based on corrected 
k

 value returning to step 2 

until desired fitting error is satisfied or maximum 

number of iteration in training step is reached. 

3. Results 

In this section some results of our proposed algorithm 

in Gaussian Combination Model for ECG modeling with 

benefits and drawbacks of two proposed fitting range 

determination methods have been provided. In order to 

compare the results of our methods, we defined a unique 

criterion. We described error criterion as area under 

absolute of local error for this purpose.  

A standard ECG with its GCM model (provided by 

zero crossing method) has been shown in Figure 1.  

Using Zero crossing method for fitting interval 

determination in ECG synthesis for model shown in 

Figure 1, results in greater error around zero value points 

rather than other places. Elevation of ECG from zero 

baseline is also another error rising factor in this method. 

Utilizing minimum bank method for discovery of 

Gaussian fitting interval, as shown in Figure 2, results in 

lesser errors rather than the above method. In fact, 

minimum bank method for GCM model and original 

ECG conform in superior manner. Error in time around 

100s arises from non-symmetric shape of T wave. 

References [3, 4, and 5] proposed usage of two Gaussians 

for improving these types of errors (this correction needs 

6 parameters in order to account for each non-symmetric 

feature of ECG). Alternatively, we can suggest using of 

Asymmetrical Gaussian function for compensating errors 

in asymmetric parts of ECG (5 parameters are needed for 

each asymmetric feature of ECG). Observations show 

that minimum bank method performs a better modelling 

for ECGs which have baseline wandering. 
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Figure 1. Left: One cycles of standard ECG and its GCM 

model (interval fitting determination: zero crossing 

method). Right: Error diagram (error criterion = 233.2). 

For comparison of model determination time, we used 

a computer with Intel Pentium 1.73GHz  CPU and 

512MB of RAM. In table 2 with variation of Gaussian 

numbers, we could compare errors of minimum bank and 

zero crossing methods regarded to each other. This table 

also provides modeling time needed. 

With examination of Table 1, we can conclude that 

increase in Gaussian numbers improve accuracy of the 
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model but result in increase of model calculation time. As 

shown for all different Gaussian numbers, error in 

minimum bank method is lesser than zero crossing 

method, but model calculation time is better for the zero 

crossing method than the minimum bank method. 

Also increasing the number of Gaussians (N) has 

improved accuracy of the synthesis system. With addition 

to the number of Gaussians, there are disadvantages in 

increasing model calculation time. It should be noted that 

increasing number of Gaussians from a particular value 

will not reduce the error. These errors arise from 

asymmetrical parts of ECG which Gaussians can't fit. 
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Figure 2. Left: One cycles of standard ECG and its GCM 

model (interval fitting determination: minimum bank 

method). Right: Error diagram (error criterion = 73.38). 

Table 2. Comparison of errors and algorithm running 

time of zero crossing and minimum bank methods 

 

N 

 

zero crossing method 
minimum bank 

method 

Error 
Running 

Time  
Error 

Running 

Time  

4 283.7 0.04s 342.4 0.03s 

10 234.8 0.09s 194.1 0.19s 

20 233.4 0.23s 102.3 0.44s 

50 233.2 0.35s 74.4 1.47s 

100 233.2 0.38s 73.3 3.5s 

133 233.2 0.42 s 73.3 4.8s 

4. Discussion and conclusions 

In GCM method, cycle(s) of ECG are represented with 

combination of Gaussians. In this paper, we assumed that 

Gaussians in GCM are independent. We used zero 

crossing and minimum bank methods in order to find the 

best place for each independent Gaussian. 

Using fitting range determination, fitting method and 

similarity of morphologic shape of ECG with Gaussian 

Combination Model provides reasonable results with 

negligible error.  

Zero crossing method is faster than minimum bank 

method but has lesser accuracy. Modeling time to 

produce each cycle of ECG is in order of seconds and the 

number of Gaussians will affect this time.  

In this paper attempts were made to provide an 

algorithm that models the time domain ECG signal 

directly and based on morphological features. This 

synthesis method has been used to generate a database of 

normal and abnormal ECGs that can be used for teaching 

purposes and evaluation of ECG signal processing 

algorithms. Each Signal in the database is represented 

with mean and variance of Gaussians that generate a 

signal with minimum error. As a result, we have a 

collection of Gaussian parameters (equal to number of 

Gaussians that have been used in GCM model). 
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